Effective Uses of Dirhodium(II) Tetrakis[methyl
 2-oxopyrrolidine-5(R or S)-carboxylate] for Highly Enantioselective Intermolecular Cyclopropenation Reactions

Michael P. Doyle, ${ }^{*}{ }^{\dagger}$ Marina Protopopova, ${ }^{\dagger}$ Paul Müller, ${ }^{, \dagger}{ }^{\ddagger}$ Doina Ene, ${ }^{\ddagger}$ and Evgeny A. Shapiro ${ }^{*}, 8$

Contribution from the Department of Chemistry, Trinity University, San Antonio, Texas 78212, the Département de Chimie Organique, Université de Genève, 30 quai Ernest-Ansermet CH-1211, Genève, Switzerland, and the N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 117913 Moscow, Russian Federation

Received April 28, 1994°

Abstract

The title compounds are effective catalysts for intermolecular cyclopropenation reactions of 1-alkynes with diazo esters and diazo amides. Diastereoselectivities achieved from the appropriate match with d - or l-menthyl diazoacetate are 77 to $\geq 94 \%$ de. Enantioselectivities up to $\geq 94 \%$ ee with 3 -methoxy-1-propyne and 3,3 -diethoxy-1-propyne have been obtained. Variations in these values for metal carbene additions to alkynes are associated with electronic and/or steric influences from the alkyne or carbene substituents. N, N-Dimethyldiazoacetamide provides a higher level of enantiocontrol than do diazo esters. The absolute configurations of the cyclopropene products have been established; dirhodium(II) tetrakis[methyl 2-oxopyrrolidine-5(S)-carboxylate], $\mathrm{Rh}_{2}(5 S \text {-MEPY) })_{4}$, produces 2 -substituted-2-cyclopropene-1-carboxylates having the (S)-configuration whereas use of $\mathrm{Rh}_{2}(5 R-\mathrm{MEPY})_{4}$ provides these cyclopropene products in the (R)-configuration. Diimide reduction of these cyclopropenecarboxylates produces the cis-disubstituted cyclopropane products exclusively.

Expanding interest in cyclopropenes as synthetic intermediates has prompted increased attention to their synthesis and their reactivities. ${ }^{1-3}$ Their uses in cycloaddition and sigmatropic reactions, ${ }^{4,5}$ suitability for functionalization by $\mathrm{X}-\mathrm{Y}$ addition, ${ }^{1,2,6,7}$ and rearrangements to vinylcarbenes catalyzed by transition metal compounds ${ }^{8-11}$ have brought new importance to these previously obscure strained compounds. Furthermore, a n increasing number of biomolecules that possess a cyclpropene ring, including fatty acids and sterols, ${ }^{12,13}$ has been isolated and characterized.

The synthesis of cyclopropenes by copper- or rhodium-catalyzed reactions of diazocarbonyl compounds with alkynes (eq 1) ${ }^{2,3,9,14-17}$ is a simple and convenient methodology. Although intramolecular

[^0]
cyclopropenation reactions often result in extensive rearrangements primarily due to the instability of the intermediate cyclopropene,, , ${ }^{8,11}$ intermolecular reactions form stable cyclopropenes when mild reaction conditions are employed. ${ }^{9,14-18}$ Of the catalysts that have been employed for cyclopropenation, those of rhodium(II) have been the most generally effective.
We have previously reported that the chiral dirhodium(II) catalysts, dirhodium(II) tetrakis[methyl 2-oxopyrrolidine-5(S)carboxylate], $\mathrm{Rh}_{2}(5 S \text {-MEPY })_{4}$, and its enantiomeric counterpart, $\mathrm{Rh}_{2}(5 R \text {-MEPY })_{4}$, are exceptionally effective for highly enantioselective intermolecular cyclopropenation reactions of alkyl diazoacetates. ${ }^{19}$ With $l-(-)$ - or $d-(+)$-menthyl diazoacetate, for example, diastereoselectivities as high as $\geq 94 \%$ de were achieved with propargyl methyl ether and propargyl acetate. An alternative chiral semicorrin copper catalyst ${ }^{20}$ was relatively ineffective for these same reactions. ${ }^{19}$ We now wish to report the scope of these enantioselective cyclopropenation reactions, factors that enhance enantiocontrol, and the absolute stereochemistry of the cyclopropene products.

Results

Diastereoselectivity. Diazo decomposition of d - or l-menthyl diazoacetate with Rh_{2} (MEPY) ${ }_{4}$ catalysts in the presence of select

[^1]Table 1. Diastereoselective Cyclopropenation of Representative 1-Alkynes by Menthyl Diazoacetates Catalyzed by $\mathrm{Rh}_{2}(5 R \text {-MEPY })_{4}$ and $\mathrm{Rh}_{2}(5 S \text {-MEPY })_{4}$

catalyst	diazoacetate, ${ }^{a}$ $\mathbf{R}^{\prime}=$	$\begin{gathered} 1 \text {-alkyne, } \\ R= \end{gathered}$	cyclopropene ${ }^{b}$	yield, \%c	de, \% ${ }^{d}$	absolute confige
$\mathrm{Rh}_{2}(5 R-\mathrm{MEPY})_{4}$	d-menthyl	MeOCH_{2}	1Rd	43	≥ 94	R
$\mathrm{Rh}_{2}(5 R-\mathrm{MEPY})_{4}$	l-menthyl	MeOCH_{2}	1 RI	45	43	R
$\mathrm{Rh}_{2}\left(5 S\right.$-MEPY) ${ }_{4}$	d-menthyl	MeOCH_{2}	1Sd	30	40	S
$\mathrm{Rh}_{2}\left(5 S\right.$-MEPY) ${ }_{4}$	l-menthyl	MeOCH_{2}	151	20	≥ 94	S
$\mathrm{Rh}_{2}\left(5 S\right.$-MEPY) ${ }_{4}$	l-menthyl	AcOCH_{2}	2 SI	30	≥ 94	S
$\mathrm{Rh}_{2}\left(5 R\right.$-MEPY) ${ }_{4}$	d-menthyl	$n-\mathrm{Bu}$	3Rd	46	86	R
$\mathrm{Rh}_{2}(5 R-\mathrm{MEPY})_{4}$	l-menthyl	$n-\mathrm{Bu}$	3RI	46	20	R
$\mathrm{Rh}_{2}(5 S-\mathrm{MEPY})_{4}$	d-menthyl	$n-\mathrm{Bu}$	3Sd	24	14	S
$\mathrm{Rh}_{2}(5 S-\mathrm{MEPY})_{4}$	l-menthyl	$n-\mathrm{Bu}$	3SI	45	84	S
$\mathrm{Rh}_{2}\left(5 R\right.$-MEPY) ${ }_{4}$	d-menthyl	$t-\mathrm{Bu}$	4Rd	51	77	R
$\mathrm{Rh}_{2}\left(5 R\right.$-MEPY) ${ }_{4}$	l-menthyl	t-Bu	4RI	50	56	R

a l-Menthyl $=(1 R, 2 S, 5 R)$-2-isopropyl-5-methylcyclohexyl; d-menthyl $=(1 S, 2 R, 5 S)$-2-isopropyl-5-methylcyclohexyl. ${ }^{b} R$ or S is catalyst configuration; d or l is configuration of menthyl. ${ }^{c}$ Yield of chromatographically purified cyclopropene. ${ }^{d}$ From ${ }^{1}$ H NMR analyses, $\pm 3 \%$; with those at $\geq 94 \%$, minimum value is given. Results confirmed with duplicate runs. ${ }^{\text {e For assignment see section on absolute configurations of cyclo- }}$ propenes.

1-alkynes forms cyclopropene derivatives (eq 2) in moderate yield

$$
\begin{aligned}
& 1, \mathrm{R}=\mathrm{MeOCH}_{2} \\
& 2, \mathrm{R}=\mathrm{AcOCH}_{2} \\
& 3, \mathrm{R}=n-\mathrm{Bu} \\
& 4, \mathrm{R}=t-\mathrm{Bu}
\end{aligned}
$$

but, with the match of d-menthyl diazoacetate (d-MDA) with $\mathrm{Rh}_{2}(5 R \text {-MEPY) })_{4}$ or l-menthyl diazoacetate (l-MDA) with $\mathrm{Rh}_{2}(5 S \text {-MEPY })_{4}$, high diastereocontrol (Table 1). Product yields are those of the purified cyclopropenes, isolated by chromatography, and are not optimized. Diastereomeric excesses (\% de) are from direct ${ }^{1} \mathrm{H}$ NMR analyses ($\pm 3 \%$) of the cyclopropene vinyl hydrogen near $\delta 6.3$. Use of $\mathrm{Rh}_{2}(5 R \text {-MEPY })_{4}$ provides substantial enhancement of \% de for cyclopropene products formed by reactions of d-menthyl diazoacetate with 1-alkynes over that from reactions with l-menthyl diazoacetate. Likewise, $\mathrm{Rh}_{2}(5 S$ MEPY $)_{4}$ provides a mirror image enhancement of $\%$ de for cyclopropene products formed by reactions with l-menthyl diazoacetate. Polar ether or acetate substituents, from methyl propargyl ether or propargyl acetate, respectively, gave enhanced diastereocontrol over that found with aliphatic substituents. Use of the neopentyl ester derivative of $\mathrm{Rh}_{2}(5 S-\mathrm{MEPY})_{4}, \mathrm{Rh}_{2}(5 S$ NEPY) $4,{ }^{21}$ gave the same results with methyl propargyl ether/ l-menthyl diazoacetate as those reported in Table 1 for $\mathrm{Rh}_{2}(5 S$ MEPY) ${ }_{4}$.

Selective cyclopropenation of enynes has been reported for $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$-catalyzed reactions of methyl diazoacetate. ${ }^{22}$ However, the vinylcyclopropene products derived from these metal carbene reactions are unstable and undergo [$2+2$] cycloaddition.

[^2]Diazo decomposition of d-menthyl diazoacetate in the presence of 4-methylpent-3-en-1-yne catalyzed by $\mathrm{Rh}_{2}(5 R \text {-MEPY })_{4}$ produced the cycloaddition product 6 Rd in 75% yield following chromatography and in 70% de (Scheme 1). With l-MDA and 4 -methylpent-3-ene-1-yne catalyzed by $\mathrm{Rh}_{2}(5 S \text {-MEPY })_{4}$, the analogous product 6 S/ was produced in 68% de (55% yield), but the use of d-MDA with $\mathrm{Rh}_{2}(5 S \text {-MEPY })_{4}$ catalysis gave $\mathbf{6 S d}$ in only 30% de (53% yield). The major byproduct from these transformations was the water insertion products of the menthyl diazoacetates.

Product analyses were performed by mass spectroscopy and by ${ }^{1}$ H NMR spectroscopy which showed characeristic absorptions for 6 at $\delta 2.5$ and 5.3. Two isomers were observed in each case, and they were assigned to the diastereomeric forms of 6 that possess the 1,2 -divinyl arrangement and exo,exo-dicarboxylate configuration. The anti-divinyl isomers were not observed, which is consistent with prior observations of methyl ester derivatives ${ }^{22}$ and of the "head-to-head" $[2+2]$-cyclodimerization of 1 -vinylcyclopropene. ${ }^{24}$ Thermal decomposition of 6 Rd in refluxing toluene yielded 7 quantitatively (eq 3) and with the same \% de as the reactant.

6Rd

Diazodecomposition of d-menthyl diazoacetate by dirhodium(II) tetrakis [4(R)-benzyl-2-oxazolidinone], $\mathrm{Rh}_{2}\left(4 R\right.$-BNOX) ${ }_{4}{ }^{2 S}$ in the presence of 4-methylpent-3-en-1-yne produced 6 Rdin 79% yield but with only 8% de. The sterically restrictive catalyst, dirhodium(II) tetrakis[4(S)-phenyloxazolidinone], $\mathrm{Rh}_{2}(4 S$ PHOX $)_{4},{ }^{26}$ was unreactive towards diazodecomposition under the same reaction conditions.

Enantioselectivity. The high level of diastereocontrol in cyclopropenation reactions with menthyl diazoacetates and the divergence in selectivity with the use of their d - and l-enantiomers prompted us to examine the influence of diazo esters and diazoamides on enantiocontrol. Increasing the size of the ester alkyl group of diazoacetates and the use of diazoacetamides have been previously shown to increase stereocontrol in intermolecular cyclopropanation reactions. ${ }^{27}$ The results from a series of these cyclopropenation transformations catalyzed by $\mathrm{Rh}_{2}(5 S \text {-MEPY })_{4}$ and $\mathrm{Rh}_{2}(5 R \text {-MPEY })_{4}$ (eq 4) are reported in Table 2.

As is evident from the data, enantioselectivities are moderate to high, reaching $\geq 94 \%$ with propargyl methyl ether $/ N, N$ dimethyldiazoacetamide and $\geq 98 \%$ with the diethyl acetal of

Scheme 1

Table 2. Enantioselective Cyclopropenation of Representative 1-Alkynes by Diazoacetate Esters and N, N-Dimethyldiazoacetamide Catalyzed by $\mathrm{Rh}_{2}(5 S \text {-MEPY })_{4}$ and $\mathrm{Rh}_{2}(5 R \text {-MEPY })_{4}$

catalyst	$\begin{gathered} \mathrm{N}_{2} \mathrm{CHCOZ}, \\ \mathbf{Z}= \end{gathered}$	R	cyclopropene ${ }^{a}$	yield, \%b	ee, $\%$	absolute config ${ }^{d}$
$\mathrm{Rh}_{2}\left(5 S\right.$-MEPY) ${ }_{4}$	OMe	$\mathrm{CH}(\mathrm{OEt})_{2}$	8 aS	42	≥ 98	S
$\mathrm{Rh}_{2}\left(5 S\right.$-MEPY) ${ }_{4}$	$\mathrm{O}-\mathrm{t}$ - Bu	$\mathrm{CH}_{2} \mathrm{OMe}$	9 cS	52	78	S
$\mathrm{Rh}_{2}(5 R-\mathrm{MEPY})_{4}$	OEt	$\mathrm{CH}_{2} \mathrm{OMe}$	9bR	73	69	R
$\mathrm{Rh}_{2}(5 R-\mathrm{MEPY})_{4}$	$\mathrm{O}-\mathrm{t}-\mathrm{Bu}$	$\mathrm{CH}_{2} \mathrm{OMe}$	9 cR	56	78	R
$\mathrm{Rh}_{2}(5 R-\mathrm{MEPY})_{4}$	NMe_{2}	$\mathrm{CH}_{2} \mathrm{OMe}$	9 dR	22	≥ 94	R
$\mathrm{Rh}_{2}\left(5 R\right.$-MEPY) ${ }_{4}$	OEt	n - Bu	10b R	70	54	R
$\mathrm{Rh}_{2}\left(5 R\right.$-MEPY) ${ }_{4}$	$\mathrm{O}-\mathrm{t}-\mathrm{Bu}$	$n-\mathrm{Bu}$	10cR	69	53	R
$\mathrm{Rh}_{2}(5 R-\mathrm{MEPY})_{4}$	NMe_{2}	$n-\mathrm{Bu}$	10dR	49	78	R
$\mathrm{Rh}_{2}\left(5 S\right.$-MEPY) ${ }_{4}$	OEt	n-Bu	10bS	60	51	S
$\mathrm{Rh}_{2}(5 R-\mathrm{MEPY})_{4}$	OEt	$t-\mathrm{Bu}$	11bR	85	57	R
$\mathrm{Rh}_{2}\left(5 R\right.$-MEPY) ${ }_{4}$	$\mathrm{O}-\mathrm{t}$ - Bu	t-Bu	11 CR	57	70	R
$\mathrm{Rh}_{2}\left(5 R\right.$-MEPY) ${ }_{4}$	NMe_{2}	$t-\mathrm{Bu}$	11dR	47	89	R
$\mathrm{Rh}_{2}\left(5 S\right.$-MEPY) ${ }_{4}$	OMe	n-pentyl	12aS	83	48	S

${ }^{a} R$ or S is the catalyst configuration. ${ }^{b}$ Yield of the chromatographically purified cyclopropene. ${ }^{c}$ From GC or ${ }^{1} \mathrm{H}$ NMR analyses. Results confirmed with duplicate runs. ${ }^{d}$ For assignment see section on absolute configurations of cyclopropenes.
propynal. tert-Butyl diazoacetate generally provides a higher degree of enantiocontrol than does methyl or ethyl diazoacetate, but N, N-dimethyldiazoacetamide elicits the highest level of selectivity among the diazo compounds employed for this investigation. Product yields are generally higher in reactions with methyl, ethyl, and tert-butyl diazoacetate esters than with menthyl diazoacetates, but yields from reactions with the diazoacetamide are low to moderate.

The major competing reaction in $\mathrm{Rh}_{2}(\mathrm{MEPY})_{4}$-catalyzed transformations is carbene dimer formation; but, in general, cyclopropene formation is a relatively clean process, and products can be purified without undue difficulties. However, in reactions between propargyl methyl ether and N, N-dimethyldiazoacetamide multiple products were formed whose identities were not determined. The use of alternative dirhodium(II) catalysts for cyclopropenation did not provide any advantage. For example, enantiomeric excesses were only $5 \%\left[\mathrm{Rh}_{2}(4 S \text {-BNOX })_{4}\right], 6 \%$ $\left[\mathrm{Rh}_{2}(4 S \text {-IPOX })_{4}\right]^{28}$ and $22 \%\left[\mathrm{Rh}_{2}(5 S-\mathrm{NEPY})_{4}\right]$ for reactions between 1-hexyne and ethyl diazoacetate, relative to 54% with $\mathrm{Rh}_{2}(5 R-\mathrm{MEPY})_{4}$, and competing dimer formation was more important with these catalysts. Similarly, 12aS was produced by

[^3]$\mathrm{Rh}_{2}(4 S \text {-PHOX })_{4}$ catalysis with 38% ee but in only 19% yield. With the use of $\mathrm{Rh}_{2}(4 S \text {-MEOX })_{4}$ enantiomeric excesses were only 14% for $\mathbf{1 0 c S}$ and 57% for 9 bS. As was previously reported, ${ }^{19}$ a chiral(semicorrinato)-copper(II) catalyst, bis $\{(1 S, 9 S)$-1,9-bis-[(tert-butyldimethylsilyl)oxy]methyl]-5-cyanosemicorrinato\}copper(II), was not effective for enantioselective cyclopropenation reactions; both \% ee values and product yields were low.

The use of disubstituted acetylenes gave unsatisfying results. With 1-phenylpropyne, cyclopropenation with ethyl diazoacetate catalyzed by $\mathrm{Rh}_{2}(5 S \text {-MEPY })_{4}$ produced the corresponding cyclopropene product in 39% yield with only 16% ee, and similar results (26% yield and 20% ee) were found for reactions performed with methyl diazoacetate. Even lower selectivities ($<2 \%$ ee) were found for cyclopropenation of 1-(trimethylsilyl)-1-hexyne.
Absolute Configurations of Cyclopropenes. Cyclopropene 12aS having an enantiomeric excess of 48% was reduced to the cisdisubstituted cyclopropane 13 (eq 5) by diimide reduction. The

13
sign of its optical rotation, which is positive, was compared to that of the cis stereoisomer of methyl 2-(n-pentyl)cyclopropane1 -carboxylate (13), ${ }^{20 \mathrm{~b}}$ and the configuration of 12 aS was assigned (S). Cyclopropene $25 I$ was reduced by diimide and then hydrolyzed with base. After extraction of the liberated l-menthol, the solution was acidified, and the resulting hydroxy acid was cyclized to produce bicyclic lactone 14 (eq 6), the absolute configuration of which has been assigned as $(1 S, 5 R)$ based on

the sector rule, ${ }^{29}$ by correlation with dictyopterene C of known absolute configuration, ${ }^{30}$ and by comparison with the same product formed by intramolecular cyclopropanation of allyl diazoacetate. ${ }^{31}$ Finally, diethyl acetal 8a S was also reduced by diimide, and then the acetal was selectivity hydrolyzed to aldehyde 15 which underwent the Wittig reaction to furnish 16 of known configuration ($1 S, 2 R$) (eq 7). ${ }^{206}$

15
16
By inference from these results, catalysis by $\mathrm{R}_{2}(5 S \text {-MEPY })_{4}$ resulted in the production of (S)-cyclopropenes in enantiomeric excess, and catalysis by $\mathrm{Rh}_{2}(5 R \text {-MEPY })_{4}$ forms the (R)cyclopropene enantiomers predominantly. Gas chromatographic separations on chiral cyclodextrin columns correlate precisely with these assignments, as dochemical shifts of the menthyl esters. Absolute configurations of cyclopropenecarboxylates formed with other dirhodium(II) catalysts correlate predictably with the configuration of the catalyst ligands.

Discussion

Dirhodium(II) catalysts that possess chiral 2-pyrrolidone-5carboxylate ester ligands are the most effective among those of dirhodium or copper for highly diastereoselective and enantioselective intermolecular cyclopropenation reactions between 1-alkynes and diazoesters. Product yields are moderate, and enantiomeric excesses (Table 2) range from 40% to greater than 98%. Furthermore, the absolute configurations of the major enantiomer/diastereoisomer is predictable from the catalyst that is employed: $\mathrm{Rh}_{2}\left(5 S\right.$-MEPY) ${ }_{4}$ ($\mathbf{1 7 S}$) produced cyclopropenecarboxylates in the (S)-configuration, and $\mathrm{Rh}_{2}\left(5 R\right.$-MEPY) ${ }_{4}$ (17R) forms the (R)-enantiomer predominantly.

17 S

17R

The absolute configuration of cyclopropene products is predictable from analysis of the reactive conformation of the intermediate metal carbene. Looking down the rhodium-rhodium bond axes of $17 S$ and $17 R$, the carboxylate attachments (A) are oriented counterclockwise in $\mathrm{Rh}_{2}(5 S \text {-MEPY })_{4}$ and clockwise in $\mathrm{Rh}_{2}(5 R \text {-MEPY })_{4}$. The carbene is bound to rhodium with minimum energy conformations that have previously been modeled for cyclopropanation reactions ${ }^{25}$ and are depicted by $18 S$ and $18 R$. Approach by the terminal alkyne, depicted by R^{\prime} projected out of a circle, to the carbene center occurs such that the alkyne is perpendicular to the catalyst face (e.g., 20), in accordance with the principle of least motion and in order to maximize overlap in the transition state. In this way, $\mathrm{Rh}_{2}(5 S$ -

[^4]

MEPY) $)_{4}$ produces $19 S$, and $\mathrm{Rh}_{2}(5 R \text {-MEPY) })_{4}$ forms $19 R$. Approach of the alkyne to the carbene so that the alkyne is

perpendicular to the catalyst face also explains the failure of internal alkynes to undergo efficient cyclopropenation reactions and give even moderate enantiomeric excesses; steric restrictions from the catalyst face prevent close approach of the alkyne π-bond to the carbene center in 18 and, with $\mathrm{Rh}_{2}\left(5 S\right.$-MEPY) ${ }_{4}$ for example, allow enhanced competition from metal carbene conformation 21. The influences of increasing the size of R in the carbene and of the steric and/or electronic nature of R^{\prime} are more subtle, and they are likely to result, at least in part, from interactions between carbene substituents and the alkyne substituent.

Diimide reduction of these cyclopropene isomers produces the corresponding cis-disubstituted cyclopropane esters exclusively with the moderate to high enantiomeric/diastereoisomeric excesses achieved by cyclopropenation; alternative attempts to produce the cis-disubstituted cyclopropane compounds directly by enantioselective intermolecular olefin cyclopropanation ${ }^{32}$ have not been comparatively successful. Overall, as is demonstrated by results in eq 5-7, cyclopropenation-reduction (with diimide) is a viable methodology for the clean and efficient formation of enantiomerically-enriched cis-disubstituted cyclopropane compounds.

Experimental Station

General Methods: Dirhodium(II) tetraacetate was obtained commercially or prepared from rhodium(III) chloride hydrate. ${ }^{33} \mathrm{Rh}_{2}(5 S$. MEPY $)_{4}, \mathrm{Rh}_{2}(5 R-\mathrm{MEPY})_{4}, \mathrm{Rh}_{2}(4 S \text {-BNOX })_{4}, \mathrm{Rh}_{2}(4 S \text {-IPOX) })_{4}$, and $\mathrm{Rh}_{2}(4 \mathrm{~S}-\mathrm{PHOX})_{4}$ were synthesized from $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ as previously described. ${ }^{25,26} d-(+)$-Menthyl diazoacetate and $l-(-)$-menthyl diazoacetate ${ }^{20 \mathrm{~b}}$ were prepared from their corresponding diazoacetoacetate esters ${ }^{34}$ by deacylation in aqueous acetonitrile using 3.0 equiv of lithium hydroxide monohydrate. Dichloromethane was distilled from calcium hydride prior to use. Microanalyses were performed at Texas Analytical Laboratories, Inc.

Cyclopropenation of 1-Alkynes with Diazoacetate Esters. To a light blue solution of 1 -alkyne (10.0 mmol) and chiral Rh_{2} (MEPY) $)_{4}(0.010$ mmol) in 10 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature and under nitrogen was added the diazoester (1.00 mmol) in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ through a syring pump at a rate of $1.0 \mathrm{~mL} / \mathrm{h}$. The blue color for the solution generally remained until near the end of the addition at which time the

[^5]reaction solution became red. After addition was complete, the reaction mixture was filtered through a $1-\mathrm{cm}$ silica plug to separate the catalyst, and the plug was eluted with 70 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The dichloromethane solution was then evaporated under reduced pressure. Cycloprop-2-ene1 -carboxylate esters were purified by column chromatography on silica gel with hexane-ethyl acetate as the eluent. Diastereomeric excesses for 1-4 were obtained by direct NMR analysis of the vinylic proton ($\pm 3 \%$); in all cases the $R d$ and $S l$ diastereoisomers had the higher chemical shift. Enantiomeric excesses of 9-11 were determined with the use of chiral NMR shift reagent $\mathrm{Eu}(\mathrm{tfc})_{3}$ on the vinylic proton ${ }^{35}$ and for 9-11b and 9-11c by chromatographic separation on a Chiraldex γ-cyclodextrin trifluoroacetate (G-TA) column with correspondence to within $\pm 2 \%$. 2-Cyclopropenes formed from 1-phenylpropyne ${ }^{35}$ and 1-trimethylsilyl-1-hexyne ${ }^{36}$ have been previously reported. 2-Cyclopropene-1-carboxylates formed in reactions catalyzed by $\mathrm{Rh}_{2}(5 R \text {-MEPY })_{4}$ were spectroscopically identical with those from $\mathrm{Rh}_{2}(5 S \text {-MEPY })_{4}$-catalyzed reactions.
(1R,2S,5R)-Menthyl 2-(Methoxymethyl)cycloprop-2-ene-1-carboxylate (1Rd). Mass spectrum, m / e (rel abundance): 266 ($0.6, \mathrm{M}$), 138 (19), 128 (18), 111 (17), 97 (12), 96 (33), 95 (40), 83 (100), 81 (35), 69 (24), 67 (30), 55 (64), 53 (32). IR (neat): 3138, 1800 ($=$ =C), 1729 $(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{3}: \mathrm{C}, 72.14 ; \mathrm{H}, 9.84$. Found: $\mathrm{C}, 72.20 ; \mathrm{H}, 9.87$. Major diastereoisomer. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}): \delta 6.67(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dt}, J=10.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ (dd, $J=17.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ (dd, $J=17.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.43(\mathrm{~s}, 3 \mathrm{H})$, $2.28(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.73-$ $1.62(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.14-0.80(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=6.8$ $\mathrm{Hz}, 6 \mathrm{H}), 0.76(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. Minor diastereoisomer. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.66(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dt}, J=10.8,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=17.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=17.5,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.86-$ $1.80(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.14-0.80(\mathrm{~m}$, $2 \mathrm{H}), 0.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.77(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
(1S,2R,5S)-Menthyl 2-(Acetoxymethyl)cycloprop-2-ene-1-carboxylate (2SI). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 6.70(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.02(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}) 4.70(\mathrm{dt}, J=10.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.00-0.70(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50\right.$ MHz): $\delta 174.6$ (s), 170.3 (s), 111.1 (s), 98.6 (d), 74.3 (d), 58.0 (d), 47.1 (d), 45.4 (d) 41.0 (t), 34.4 (t), 31.4 (d), 29.7 (t), 26.5 (d), 23.5 (t), 22.0 (q), 20.8 (q), 20.7 (q), 16.4 (q). Mass spectrum, m / e (rel abundance): 294 (M^{+}, absent), 155 (10), 138 (20), 111 (100), 83 (50). A de of 98% determined by ${ }^{1} \mathrm{H}$ NMR (400 MHz) from q at 6.70 and $6.69 \mathrm{ppm}:[\alpha]^{20} \mathrm{D}$ $=-70^{\circ}\left(\mathrm{CHCl}_{3}, c=6.7\right)$. Product was purified by column chromatography on silica (hexane:ethyl acetate $=5: 1$).
(1R,2S,5R)-Menthyl 2-(n-Butyl)cycloprop-2-ene-1-carboxylate (3Rd). Mass spectrum, m / e (rel abundance): 278 ($0.2, \mathrm{M}$), $140(18), 123$ (12), 97 (27), 95 (100), 83 (55), 81 (31), 69 (28), 67 (22), 55 (64), 53 (23). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2}: \mathrm{C}, 77.65 ; \mathrm{H}, 10.86$. Found: $\mathrm{C}, 77.54 ; \mathrm{H}$, 10.92. Major diastereoisomer. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.34$ $(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{dt}, J=10.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dt}, J=7.1$, $1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.80$ $(\mathrm{m}, 1 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.31(\mathrm{~m}, 7 \mathrm{H}), 1.14-0.80(\mathrm{~m}, 2 \mathrm{H})$, $0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$, and $0.75(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H})$. IR (neat): $3140,1803(\mathrm{C}=\mathrm{C}), 1729(\mathrm{C=O}) \mathrm{cm}^{-1}$. Minor diastereoisomer. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.32(\mathrm{q}, J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.69(\mathrm{dt}, J=10.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dt}, J=7.2,1.3 \mathrm{H}, 2 \mathrm{H}), 2.10$ (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.61$ $(\mathrm{m}, 2 \mathrm{H}), 1.61-1.31(\mathrm{~m}, 7 \mathrm{H}), 1.14-0.80(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.76(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
(1R,2S,5R)-Menthyl 2-(tert-Butyl)cycloprop-2-ene-1-carboxylate (4Rd). IR (neat): 3140, $1798(\mathrm{C}=\mathrm{C}), 1730(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2}$: C, 77.65; H, 10.86. Found: C, 77.57; H, 10.91. Major diastereoisomer. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.20(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.69(\mathrm{dt}, J=10.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.91$ (m, 1H), 1.91-1.81 (m, 1H), 1.72-1.61 (m, 2H), 1.57-1.31 (m, 3H), $1.17(\mathrm{~s}, 9 \mathrm{H}), 1.14-0.80(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.75(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}$). Mass spectrum, m / e (rel abundance): $263(0.2, \mathrm{M}-15)$, $140(17), 125(44), 123(12), 95(100), 83(24), 81$ (13), $69(15), 67(37)$, 55 (48), 53 (11). Minor diastereoisomer. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 6.23$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dt}, J=10.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ (d, J $=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.819 \mathrm{~m}, 1 \mathrm{H}), 1.72-1.61(\mathrm{~m}$, $2 \mathrm{H}), 1.57-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 1.14-0.80(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=$ $7.2 \mathrm{~Hz}, 6 \mathrm{H}$), and $0.75(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. Mass spectrum, m / e (rel

[^6]abundance): 263 ($0.2, \mathrm{M}-15$), 140 (14), 125 (36), 123 (10), 95 (100), 83 (21), 81 (10), 69 (12), 67 (29), 55 (38), 53 (8).

Methyl 2-(Diethoxymethyl)cycloprop-2-ene-1-carboxylate (8aS). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$: $\delta 6.79-6.78(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.45(\mathrm{~m}, 4 \mathrm{H}), 2.37(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.25-$ $\left.1.17(\mathrm{dt}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 50 \mathrm{MHz}\right): ~ \delta 175.4(\mathrm{~s}), 112.7(\mathrm{~s}), 100.3$ (d), 96.0 (d), 61.6 (t), 51.6 (q), 20.6 (d), 15.1 (q), 15.05 (q). Mass spectrum, m / e (rel abundance): 200 (${ }^{+}$, absent), 169 (2), 155 (25), 141 (8), 127 (74), $103(74), 75(56), 59(31), 47(100)$. IR ($\left.\mathrm{CHCl}_{3}\right)$: $1723 \mathrm{~cm}^{-1}$. $[\alpha]^{20} \mathrm{D}=+29.5^{\circ}\left(\mathrm{CHCl}_{3}, c=2.61\right)$ for $>98 \%$ ee (GC on Lipodex E column from reaction catalyzed by $\mathrm{Rh}_{2}(5 S$-MEPY) 4). 42% Yield after preparative TLC $\left(\mathrm{SiO}_{2}\right.$, hexane:cthyl acetate $\left.=3: 1\right)$.

Ethyl 2-(Methoxymethyl)cycloprop-2-ene-1-carboxylate (9bR). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.67(\mathrm{q}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{AB}, 2 \mathrm{H})$, $4.14(\mathrm{dq}, J=6.7,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 1.26$ $(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$. IR (neat): $3143,1802(\mathrm{C}=\mathrm{C}), 1728(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. $[\alpha]^{23}{ }_{\mathrm{D}}=-64.5^{\circ}\left(\mathrm{CHCl}_{3}, c=1.55\right)$ for 69% ee from reaction catalyzed by $\mathrm{Rh}_{2}(5 R \text {-MEPY) })_{4}$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3}: \mathrm{C}, 61.54: \mathrm{H}, 7.69$. Found: C, 61.32; H, 7.84 .
tert-Butyl 2-(Methoxymethyl)cycloprop-2-ene-1-carboxylate (9cR). ${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.64(\mathrm{q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}),, 4.53(\mathrm{~s}, 2 \mathrm{H})$, 3.43 (s, 3H), $2.20(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$. IR (neat): 3148, $1801(\mathrm{C}=\mathrm{C}), 1724(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. Mass spectrum, m / e (rel abundance): 169 ($0.2, \mathrm{M}-15$), 141 (0.5), 128 (3.6, M - $\mathrm{C}_{4} \mathrm{H}_{8}$), 96 (13), 83 (100), 68 (21), $57(72), 55(57), 53(70) .[\alpha]^{23} \mathrm{D}=-58.8^{\circ}\left(\mathrm{CHCl}_{3}, c=2.50\right)$ for 78% ee from reaction catalyzed by $\mathrm{Rh}_{2}(5 R \text {-MEPY })_{4}$. On the Chiraldex G-TA column ($105^{\circ} \mathrm{C}$) the R-enantiomer eluded at 22.7 min and the S-enantiomer eluted at 23.8 min .

Ethyl 2-(n-Butyl)cycloprop-2-ene-1-carboxylate (10bR). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 300 \mathrm{MHz}\right): \delta 6.34(\mathrm{q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dq} J=7.1,3.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.51 (dt $J=7.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.14 (d, $J=15 \mathrm{~Hz}, 1 \mathrm{H}) 1.58$ (quin, $\mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.40(\mathrm{sex}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3 H), and $0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. IR (neat): $3142,1807(\mathrm{C}=\mathrm{C})$, and $1732(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. Mass spectrum, m / e (rel abundance): 168 (1.2), 139 (5), 125 (10), 97 (80), 95 (100), 67 (30), 55 (40), 53 (61). $[\alpha]^{23}$ D $=-34.1^{\circ}\left(\mathrm{CHCl}_{3}, c=0.82\right.$) for 54% ee from reaction catalyzed by $\mathrm{Rh}_{2}\left(5 R\right.$-MEPY) ${ }_{4}$. This compound has been previously prepared. ${ }^{16,37}$
tert-Butyl 2-(n-Butyl)cycloprop-2-ene-1-carboxylate (10cR). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.30(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{tt}, J=7.2$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.57$ (quin, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.44 (s, 9H), 1.39 (sex, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 0.92 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$). IR (neat): $3140,1802(\mathrm{C}=\mathrm{C}), 1725(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. Mass spectrum, m / e (rel abundance): 181 ($0.1, \mathrm{M}-15$), 140 (7.6), 111 (2), 97 (32), 95 (100), 57 (52), $55(14), 53(26) .[\alpha]^{23} \mathrm{D}=-34.8^{\circ},[\alpha]^{23} 436=-70.4^{\circ},[\alpha]^{23}{ }_{365}$ $=-115^{\circ}\left(\mathrm{CHCl}_{3}, c=0.54\right)$ for 53% ee from reaction catalyzed by $\mathrm{Rh}_{2}(5 R$ MEPY) 4. On the Chiraldex G-TA column ($100^{\circ} \mathrm{C}$ for 2 min , then 0.5 ${ }^{\circ} \mathrm{C} / \mathrm{min}$ to $120^{\circ} \mathrm{C}$), the R-enantiomer eluted at 22.1 min and the S -enantiomer eluted at 23.1 min . Anal. Caled for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}: \mathrm{C}, 73.43$; $\mathrm{H}, 10.27$. Found: C, 73.22; H, 10.19 .

Ethyl 2-(tert-Butyl)cycloprop-2-ene-1-carboxylate (11bR). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.21(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.04(\mathrm{~m}, 2 \mathrm{H}), 2.17$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H})$. IR (neat): $3019,1793(\mathrm{C}=\mathrm{C}), 1707(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} .[\alpha]^{23} \mathrm{D}=-53.2^{\circ}\left(\mathrm{CHCl}_{3}, c=\right.$ 1.40) for 57% ee from reaction catalyzed by $\mathrm{Rh}_{2}(5 R-\mathrm{MEPY})_{4}$. This compound has been previously prepared. ${ }^{16,37}$
tert-Butyl 2-(tert-Butyl)cycloprop-2-ene-1-carboxylate (11cR). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.18(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=1.6$ $\mathrm{Hz} 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$, and $1.18(\mathrm{~s}, 9 \mathrm{H})$. IR (neat): $3146,1795(\mathrm{C}=\mathrm{C})$, $1730(\mathrm{C}=0) \mathrm{cm}^{-1}$. Mass spectrum, m / e (rel abundance): 181 ($0.1, \mathrm{M}$ $-15), 140\left(5.9, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}\right), 125$ (47), 95 (100), 79 (18), 67 (51), 57 (54), 55 (36). $[\alpha]^{23}{ }_{\mathrm{D}}=-34.8^{\circ},[\alpha]^{23}{ }_{576}=-41.5^{\circ},[\alpha]^{23}{ }_{435}=-71.0^{\circ}\left(\mathrm{CHCl}_{3}\right.$, $c=1.81$) for 70% ee from reaction catalyzed by $\mathrm{Rh}_{2}(5 R-\mathrm{MEPY})_{4}$. On the Chiraldex G-TA column ($100^{\circ} \mathrm{C}$), the R-enantiomer eluted at 14.2 \min and the S-enantiomer eluted at 14.8 min . Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$: $\mathrm{C}, 73.43 ; \mathrm{H}, 10.27$. Found: $\mathrm{C}, 73.48 ; \mathrm{H}, 10.23$.

Methyl 2-(n-Pentyl) cycloprop-2-ene-1-carboxylate (12as). ${ }^{26}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 6.32-6.20(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.42(\mathrm{~m}$, $2 \mathrm{H}), 2.12(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.21(\mathrm{~m}, 6 \mathrm{H}), 0.96-0.88(\mathrm{t}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 177.0(\mathrm{~s}), 115.5$ (s), 93.8 (d), 51.4 (q), $31.2(\mathrm{t}), 26.2(\mathrm{t}) 24.8(\mathrm{t}), 22.2(\mathrm{t}), 19.4(\mathrm{t}), 13.8(\mathrm{q}) . \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): 3025$, $1713 \mathrm{~cm}^{-1}$. $[\alpha]^{20} \mathrm{D}=+32^{\circ}\left(\mathrm{CHCl}_{3}, c=1.9\right)$ for 48% ee from reaction catalyzed by $\mathrm{Rh}_{2}(5 S \text {-MEPY })_{4}$.
(37) Vidal, M.; Pierre, J.-L.; Arnaud, P. Bull. Soc. Chim. Fr. 1969, 8, 2864.

Dirhodium(II)-Catalyzed Diazodecomposition of Menthyl Diazoacetate in the Presence of 3-Methylpent-3-en-1-yne. To a rapidly stirred solution of dirhodium(II) catalyst ($4.1 \times 10^{-3} \mathrm{mmol}$) and enyne ($0.422 \mathrm{~g}, 5.28$ mmol) in 4.0 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added by syringe pump 4.0 mL of a dichloromethane solution of menthyl diazoacetate $(0.308 \mathrm{~g}, 1.97$ mmol) over 8 h at a rate of $0.5 \mathrm{~mL} / \mathrm{h}$. The additon was performed at room temperature during which the original lilac solution color changed to green and then tan. After addition was complete, the solvent and excess enyne were evaporated to leave 0.376 g of a residue whose ${ }^{1} \mathrm{H}$ NMR spectrum was obtained; the residue was then purified by column chromatography on silica gel (hexane:ethyl acetate $=95: 5$) which yielded $6 R d$ and menthyl glycolate. The spectral characteristics of $6 R d$ were virtually identical with those of dimethyl ester. ${ }^{22}$

Di-(1R,2S,5R)-menthyl 1,2-Bis(2-Methylprop-1-enyl)tricyclo[3.1.0.02,4-hexane-exo-3, exo-6-dicarboxylate ($6 R d$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ MHz): $\delta 5.25-5.20(\mathrm{~m}, \mathrm{C} H=$), $4.52(\mathrm{dt}, J=10.9,4.4 \mathrm{~Hz}, \mathrm{CHO}), 2.57$ (d, $J=1.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.08-2.05 (m, 2H), 1.95-1.70 (m, 4H), 1.68-1.55 $(\mathrm{m}, 4 \mathrm{H}), 1.63(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.61(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.50-1.10$ $(\mathrm{m}, 4 \mathrm{H}), 1.10-0.70(\mathrm{~m}, 6 \mathrm{H}), 0.82(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.80(\mathrm{~d}, J=5.8$ $\mathrm{Hz}, 6 \mathrm{H}), 0.66(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta$ 168.8 (C=O), 139.8 ($=\mathrm{CMe}_{2}$), 116.9 (d), 74.2 (d), 47.1 (d), 43.5 (d), 41.1 (t), 40.8 (s), 34.4 (t), 31.4 (d) 28.5 (d), 26.2 (d) 25.7 (q), 23.5 (t), 22.0 (q), 20.9 (q), 19.3 (q), 16.3 (q). Mass spectrum, m / e (rel abundance): $554\left(\mathrm{M}^{+}, 0.1\right), 552(\mathrm{M}-2,0.4), 414$ (0.9), 369 (1.5), 276 (15), 232 (14), 231 (37), 189 (13), 175 (35), 171 (11), 143 (10), 97 (18), 83 (100), 69 (37), 57 (35), 55 (50). FAB spectroscopy identified the molecular ion, $552(\mathrm{M}-2)$ and major fragmentations at $m / e 414,276$, 138.

Di-(1R,2S,5R)-menthyl 1,2-Bis(2-Methylprop-1-enyl)tricyclo[3.1.0.02,4-hexane-exo-3,exo-6-dicarboxylate (6Sd). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}): \delta 5.15-5.10(\mathrm{~m}, \mathrm{CH}=), 4.58(\mathrm{dt}, J=10.9,4.4 \mathrm{~Hz}, \mathrm{CHO}), 2.52$ (d, $J=1.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.12-2.09 (m, 2H), 1.95-1.70 (m, 4H), 1.68-1.55 $(\mathrm{m}, 4 \mathrm{H}), 1.65(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.60(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.50-1.10$ $(\mathrm{m}, 4 \mathrm{H}), 1.10-0.70(\mathrm{~m}, 6 \mathrm{H}), 0.81(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.77(\mathrm{~d}, J=5.8$ $\mathrm{Hz}, 6 \mathrm{H}), 0.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta$ 168.8 (C=O), 138.2 ($=\mathrm{CMe}_{2}$), 117.1 (d), 74.1 (d), 47.2 (d), 43.7 (d), 41.0 (t), 40.9 (s$), 34.4$ (t), 31.4 (d), 28.9 (d), 26.4 (d), 25.7 (q), 23.4 (t), 22.0 (q), 20.9 (q), 18.8 (q), 16.2 (q). Mass spectrum, m / e (rel abundance): $554\left(\mathrm{M}^{+}\right.$, absent), $552(\mathrm{M}-2,0.2), 414(0.7), 369(0.9)$, 276 (14), 232 (9), 231 (27), 189 (14), 175 (40), 171 (8), 143 (8), 97 (16), 83 (100), 69 (39), 57 (37), 55 (50). FAB spectroscopy identified the molecular ion, $552(\mathrm{M}-2)$, and major fragmentations at $m / e 414,276$, 230, 138.

Thermal Decomposition of 6 Rd. A solution of $6 R d(0.302 \mathrm{~g}, 0.725$ $\mathrm{mmol}, 70 \% \mathrm{de}$) in 5.0 mL of dry toluene was refluxed for 3.5 h . The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel to yield 0.300 g of a viscous oil whose isomeric composition determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy (68 $\pm 3 \%$ de) was the same as the reactant.

Di-(1R,2S,5R)-menthyl 1,2-Bis(2-methylprop-1-enyl)cyclohexa-1,4-diene-trans-3,6-dicarboxylate (7Rd). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): δ 5.82-5.77 (m, $\mathrm{CH}=$), $5.47-5.42(\mathrm{~m},=\mathrm{CH}), 4.63-4.58(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.70(\mathrm{M}, 4 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.63(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.48(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.50-1.20(\mathrm{~m}, 4 \mathrm{H}), 1.10-0.70$ $(\mathrm{m}, 6 \mathrm{H}), 0.84(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.81(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.69(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 171.9(\mathrm{C}=0), 135.1$ $\left(=\mathrm{CMe}_{2}\right), 128.8$ (s), 124.8 (d), 123.6 (d), 74.7 (d), 48.2 (d), 47.0 (d), 40.8 (t), 34.3 (t), 31.4 (d), 26.1 (d), 25.7 (q), 23.3 (t), 22.0 (q), 20.8 (q), 19.7 (q), 16.1 (q). Mass spectrum, m / e (rel abundance): $554\left(\mathrm{M}^{+}\right.$, absent), $550(\mathrm{M}-4,0.5), 427$ (2.8), 412 (2.0), 342 (1.5), 275 (17), 274 (91), 259 (48), 241 (11), 232 (47), 218 (42), 97 (16), 95 (19), 83 (100), 69 (48), 57 (39), 55 (73). FAB spectroscopy identified $552(\mathrm{M}-2), 550$ ($\mathrm{M}-4$), and major fragmentations at $m / e 428,410,290,272,138,136$, 134.

Di-(1R,2S,5R)-menthyl 1,2-Bis(2-methylprop-1-enyl)cyclohexa-1,4-diene-trans-3,6-dicarboxylate (7 Sd). ${ }^{1} \mathrm{H} \operatorname{NMR~CDCl} 3,300 \mathrm{MHz}$): δ $5.79-5.74(\mathrm{~m}, \mathrm{CH}=), 5.44-5.40(\mathrm{~m},=\mathrm{CH}), 4.58-4.53(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~d}$, $J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.72(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.30(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.50-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.10-0.70$ $(\mathrm{m}, 6 \mathrm{H}), 0.88(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.86(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.72(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$.

Dirhodium(II)-Catalyzed Diazodecomposition of $\boldsymbol{N}, \mathbf{N}$-Diazoacetamide

 in the Presence of 1-Alkynes. To a blue solution of the dirhodium(II) catalyst (0.030 mmol) and 1-alkyne $(6.7 \mathrm{mmol})$ in 3.0 mL of anhydrous dichloromethane, heated at reflux, was added N, N-dimethyldiazoacetamide (1.0 mmol) in 5.0 mL of dichloromethane through a syringe pumpat a rate of $1.0 \mathrm{~mL} / \mathrm{h}$. After addition was complete the red-brown solution was filtered through a $3-\mathrm{cm}$ plug of silica to separate the catalyst, and the plug was eluted with an additional 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined solvent and alkyne were evaporated under reduced pressure, and the residue was purified by column chromatography on silica gel with hexaneethyl acetate as the eluent. Enantiomeric excesses were determined with the vinylic proton using the chiral NMR shift reagent $\mathrm{Eu}(\mathrm{tfc})_{3}$.
N, N Dimethyl-2-(methoxymethyl)cycloprop-2-ene-1-carboxamide (9dR). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 6.64(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J$ $=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.89$ (s 3 H), and $2.47(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$. IR (neat): $1792(\mathrm{C}=\mathrm{C}), 1644$ $(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. Mass spectrum, m / e (rel abundance): $155\left(\mathrm{M}^{+}, 4.9\right), 154$ ($\mathrm{M}-1,1.6$), 140 (12), 125 (30), 124 (57), 111 (37), 96 (20), 83 (72), 72 (40), 68 (26), 55 (63), 53 (100). This compound defied purification by distillation or column chromatography.
$\boldsymbol{N}, \boldsymbol{N}$-Dimethyl-2-(n-butyl) cyclopropene-1-carboxamide (10dR). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 6.32(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.3-2.9$ (broad, $6 \mathrm{H}), 2.60-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 2 \mathrm{H})$, 1.38 (sextet, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$). IR (neat): 1790 $(\mathrm{C}=\mathrm{C}), 1631(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{ON}: \mathrm{C}, 71.80 ; \mathrm{H}$, 10.25; N, 8.38. Found: $\mathrm{C}, 71.94 ; \mathrm{H}, 10.22 ; \mathrm{N}, 8.31 .[\alpha]^{23} \mathrm{D}=-28.2^{\circ}$ $\left(\mathrm{CHCl}_{3}, c=1.7\right)$ for ee of 78% from reaction catalyzed by $\mathrm{Rh}_{2}(5 R$ MEPY) ${ }_{4}$.
$\boldsymbol{N}, \boldsymbol{N}$-Dimethyl-2-tert-butylcyclopropene-1-carboxamide (11dR). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 6.24(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.96$ $(\mathrm{s}, 3 \mathrm{H}), 2.40(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H})$. IR (neat): $1783(\mathrm{C}=\mathrm{C})$, $1637(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{ON}: \mathrm{C}, 71.80 ; \mathrm{H}, 10.25$; $\mathrm{N}, 8.38$. Found: $\mathrm{C}, 71.58 ; \mathrm{H}, 10.23 ; \mathrm{N}, 8.31 .[\alpha]^{23} \mathrm{D}=-25.7^{\circ}\left(\mathrm{CHCl}_{3}\right.$, $c=1.4)$ for ee of 88% from reaction catalyzed by $\mathrm{Rh}_{2}(5 R \text {-MEPY })_{4}$.

Methyl cis-2-(n-Pentyl) cyclopropane-1-carboxylate (13). To dipotassium azodicarboxylate, ${ }^{38}$ prepared from azodicarboxamide $(2.32 \mathrm{~g}$, 20 mmol) in dry THF, was added 1.0 mmol of 12 aS in THF. Acetic acid was added in portions of 2.5 mL over a period of 15 min , and the resulting mixture was stirred overnight at $25^{\circ} \mathrm{C}$. After dilution with water, the mixture was washed three times with $100-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined dichloromethane solution was washed with water until the aqueous extract was neutral, dried over anhydrous MgSO_{4}, and concentrated. The residue was purified by bulb-tube distillation $\left(20^{\circ} \mathrm{C} /\right.$ 0.2 Torr) to provide 13 in 35% yield. $[\alpha]_{\mathrm{D}}=+32^{\circ}\left(\mathrm{CHCl}_{3}, c=2.0\right)$ for 46% ee from reaction performed with $\mathrm{Rh}_{2}(5 S-\mathrm{MEPY})_{4} ; \mathrm{lit}^{20 \mathrm{~b}}[\alpha]_{\mathrm{D}}=$ $+51^{\circ}\left(\mathrm{CHCl}_{3}, c=0.2\right)$ for 93% ee $(1 S, 2 R)-13 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}): \delta 3.66(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.15(\mathrm{~m}, 9 \mathrm{H}), 1.05-0.83$ $(\mathrm{m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 173.5(\mathrm{~s}), 51.4(\mathrm{t}), 31.4(\mathrm{t})$, 29.2 (t), 26.9 (t), 21.9 (d), 17.9 (d), 13.9 (q), 13.4 (t). IR (CHCl_{3}): $1722 \mathrm{~cm}^{-1}$.

3-Oxabicyclo[3.1.0]hexan-2-one (14). Compound 2S/ was subjected to diimide reduction as described for 13 , and ($1 S, 2 R, 5 S$)-menthyl cis-2-(acetoxymethyl)cyclopropane-1-carboxylate was isolated in 85-91\% yield as a colorless oil, bp $80-100^{\circ} \mathrm{C} / 0.2$ Torr (bulb-tube distillation). $[\alpha]_{\mathrm{D}}=-27^{\circ}\left(\mathrm{CHCl}_{3}, c=6.6\right)$. This product ($102 \mathrm{mg}, 0.35 \mathrm{mmol}$) was treated with 2.2 mL of 25% aqueous sodium hydroxide in 10 mL of methanol and heated at reflux for 17 h . The resulting solution was cooled, diluted with water and extracted with ether to remove the liberated l-menthol. To the aqueous solution was added 10 mL of dioxane and 3.0 mL of 5% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$, and the mixture was heated at reflux for 8 h. After cooling, the mixture was diluted with water and extracted with dichloromethane. After drying the solution over anhydrous MgSO_{4} and evaporation of the solvent, the crude product was purified by bulb-tube distillation (bp $50^{\circ} \mathrm{C} / 0.2 \mathrm{Torr}$) to afford 20 mg (15% yield) of lactone 14, $[\alpha]_{\mathrm{D}}=-58.2^{\circ}\left(\mathrm{CHCl}_{3}, c=6.6\right) ;$ lit. ${ }^{30}[\alpha]^{20} \mathrm{D}=-69.5^{\circ}\left(\mathrm{CHCl}_{3}, c\right.$ $=6.8)$ for $(1 S, 5 R)-14$ with 100% ee, and lit. ${ }^{29}[\alpha]_{\mathrm{D}}=-61.8^{\circ}\left(\mathrm{CHCl}_{3}\right.$, $c=8$) for ($1 S, 5 R$)-14 with 100% ee.

Methyl cis-2-(2-Methylpropen-1-yl) cyclopropane-1-carboxylate (16). To dipotassium azodicarboxylate, ${ }^{38}$ prepared from azodicarboxamide ($2.32 \mathrm{~g}, 20 \mathrm{mmol}$), was added $8 \mathrm{aS}(1.0 \mathrm{mmol})$ in 5.0 mL of THF. Acetic acid (15 mL) was added in 2.5 mL portions over 15 min during which time a white precipitate formed. The solution was stirred overnight at $25^{\circ} \mathrm{C}$ after which it was diluted with water and extracted three times with $100-\mathrm{mL}$ portions of dichloromethane. The organic phase was washed with water and dried over anhydrous MgSO_{4}. After evaporation of the solvent under reduced pressure, the residue was purified by bulb-tube distillation at $50-60^{\circ} \mathrm{C} / 0.2$ Torr to yield methyl cis-2-(diethoxymethyl)-cyclopropane-1-carboxylate in 59% yield, $[\alpha]_{\mathrm{D}}=+42.4^{\circ}\left(\mathrm{CHCl}_{3}, c=\right.$ 2.6) for $>98 \%$ ee from reaction catalyzed by $\mathrm{Rh}_{2}(5 S-\text { MEPY })_{4}{ }^{1} \mathrm{H}$ NMR
(38) Pasto, J.; Taylor, R. T. Org. React. (N.Y.) 1991, 40, 91.
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 4.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.40(\mathrm{~m}, 4 \mathrm{H})$, $1.87-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.15$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 172.8(\mathrm{~s}), 101.5$ (d), 61.7 (t), 61.7 (t) 51.8 (q), 23.8 (d), 16.8 (d), 15.4 (q), 15.2 (q), 11.6 (t). Mass spectrum, m / e (rel abundance): 202 (M^{+}, absent), 157 (85), 97 (100); HRMS: 158.0974, calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{3}{ }^{+} 158.0942$.

Methyl cis-2-(diethoxymethyl)cyclopropane-1-carboxylate (101 mg , 0.50 mmol) was hydrolyzed with 2.0 mL of $3 \mathrm{~N} \mathrm{HClO}_{4}$ in 5.0 mL of THF during 3 h at $0^{\circ} \mathrm{C}$ with vigorous stirring under nitrogen. After neutralization with saturated aqueous sodium bicarbonate, the solution was extracted with dichloromethane, and the organic solution was dried over anhydrous MgSO_{4}. The solvent was evaporated, and the residue was distilled by bulb-tube distillation ($20^{\circ} \mathrm{C} / 0.2 \mathrm{Torr}$) to afford 15 in 72% yield, which was used without further purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $200 \mathrm{MHz}): \delta 9.33(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.18(\mathrm{~m}, 1 \mathrm{H})$, 2.09-1.87 (m, 2H), 1.59-1.51 (m, 1H).

Isopropylidenetriphenylphosphorane, prepared from isopropyltriphenylphosphonium bromide ($180 \mathrm{mg}, 0.47 \mathrm{mmol}$) and n-butyllithium, ${ }^{39}$ was added to aldehyde $15(60 \mathrm{mg}, 0.47 \mathrm{mmol})$ in 5.0 mL of dry ether
under N_{2} at room temperature. After 1 h of stirring, water was added, and the mixture was extracted with dichloromethane. The organic solution was washed until neutral and dried over anhydrous MgSO_{4}, and the solvent was evaporated. The residue was purified by bulb-tube distillation ($20^{\circ} \mathrm{C} / 0.2$ Torr) followed by preparative TLC (silica gel $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield 20 mg (26% yield) of a mixture containing 86% cis- $16,7 \%$ of its trans isomer and 7% of an unknown impurity that could not be separated: $[\alpha]_{\mathrm{D}}=+101.9^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=2.61\right)$; lit. $[\alpha]_{\mathrm{D}}=+231^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=\right.$ 0.75) for the ($1 S, 2 R$)-16 enantiomer.

Acknowledgment. Financial support for this research from the National Science Foundation, the National Institutes of Health (Grant No. GM 46503), and The Robert A. Welch Foundation to M.P.D. and from theSwiss National Science Foundation (Grant No. 20-32, 117.91 and $21-36,707.92$) to P.M. is gratefully acknowledged. We wish to thank Susan Weintraub for mass spectral analyses of $\mathbf{6 R d}, \mathbf{6 S d}$, and $7 \boldsymbol{R d}$.
(39) Arlt, D.; Jantelat, M.; Lantzsch, R. Angew. Chem. Int. Ed. Engl. 1981, 20, 703.

[^0]: + Department of Chemistry, Trinity University.
 Département de Chimic Organique, Université de Genève.
 ${ }^{1}$ N.D. Zelinsky Institute of Organic Chemistry. Present address: IMI Institute for Research and Development, Ltd., Haifa Bay 26111 Israel.
 - Abstract published in Advance ACS Abstracts, September 1, 1994.
 (1) (a) Baird, M. S. Top, Curr. Chem. 1988, 144, 137. (b) Binger, P.; Buch, H. M. Top. Curr. Chem. 1986, 135, 77.
 (2) Protopopova, M. N.; Shapiro, E. A. Russ. Chem. Rev. 1989, 58, 667.
 (3) Maas, G. Top. Curr. Chem. 1987, 137, 75.
 (4) (a) Rigby, J. H.; Kierkus, P. C.; Head, D. Tetrahedron Lett. 1989, 30, 5073. (b) Padwa, A.; Kulkarni, Y. S.; Terry, L. W. J. Org. Chem. 1990, 55, 2478.
 (5) Franck-Neumann, M.; Miesch, M.; Kempf, H. Synthesis 1989, 820.
 (6) Padwa, A.; Wannamaker, M. W. Tetrahedron 1991, 47, 6139.
 (7) Kartashov, V. R.; Skorobogatova, E. V.; Sokolova, T. N.; Vasileva, O. V.; Malisova, N. V.; Grishin, Y. K.; Bazhenov, D. V.; Zefirov, N. S. Zh. Org. Khim. SSR 1991, 27, 1240.
 (8) Padwa, A.; Krumpe, K. E. Tetrahedron 1992, 48, 5385.
 (9) (a) Müller, P.; Pautex, N.; Doyle, M. P.; Bagheri, V. Helv. Chim. Acta 1990, 73, 1233. (b) Müller, P.; Gränicher, C. Helv. Chim. Acta 1993, 76, 521.
 (10) (a) Hoye, T. R.; Dinsmore, C. J. Tetrahedron Lett. 1992, 33, 169. (b) Hoye, T. R.; Dinsmore, C. J. J. Am. Chem. Soc. 1991, I13, 4343.
 (11) (a) Padwa, A.; Austin, D. J.; Gareau, Y.; Kassir, J. M.; Xu, S. L. J. Am. Chem. Soc. 1993, 115, 2637. (b) Mueller, P. H.; Kassir, J. M.; Semones, M. A.; Wingarten, M. D.; Padwa, A. Tetrahedron Lett. 1993, 34, 4285. (c) Padwa, A.; Kinder, F. R. J. Org. Chem. 1993, 58, 21. (d) Padwa, A.; Austin, D. J.; Xu, S. L. J. Org. Chem. 1992, 57, 1330 . (e) Padwa, A.; Krumpe, K. E.; Kassir, J. M. J. Org. Chem. 1992, 57, 4940.

 12) (a) Baird, M.S.;Dale, C. M.; Lytollis, W.;Simpson, M. J. Tetrahedron Lett. 1992, 33, 1521. (b) Baird, M. S.; Grehan, B. J. Chem. Soc. Perkin Trans. 1 1993, 1547.
 (13) Doss, G. A.; Djerassi, C. J. Am. Chem. Soc. 1988, 110, 8124.
[^1]: (14) (a) Petiniot, N.; Anciaux, A. J.; Noels, A. F.; Hubert, A. J.; Teyssie, P. Tetrahedron Lett. 1978, 1239. (b) Noels, A. F.; Demonceau, A.; Petiniot, N.; Hubert, A. J.; Teyssie, P. Tetrahedron 1982, 38, 2733.
 (15) (a) Shapiro, E. A.; Dyatkin, A. B.; Nefedov, O. M. Izv. Akad. Nauk SSSR, Ser. Khim. 1992, 357. (b) Shapiro, E. A.; Ramanova, T. N.; Bunkina, T. A.; Dolgii, E. E.; Nefedov, O. M. Izv. Akad. Nauk SSSR, Ser. Khim 1987, 2497.
 (16) Cho, S. H.; Liebeskind, L. S. J. Org. Chem. 1987, 52, 2631.
 (17) Davies, H. M. L.; Romines, K. P. Tetrahedron 1988, 44, 3343.
 (18) O'Bannon, P. E.; Dailey, W. P. J. Org. Chem. 1991, 56, 2258.
 (19) Protopopova, M. N.; Doyle, M. P.; Müller, P.; Ene, D. J. Am. Chem. Soc. 1992, 114, 2755.
 (20) (a) Fritschi, H.; Leutenegger, U.; Siegmann, K.; Pfaltz, A.; Keller, W.; Kratky, Ch. Helv. Chim. Acta 1988, 71, 1541. (b) Fritschi, H.; Leuteneeger, U.; Pfaltz, A. Helv. Chim. Acta 1988, 71, 1553.

[^2]: (21) Doyle, M. P.; van Oeveren, A.; Westrum, L. J.; Protopopova, M. N.; Clayton, T. W., Jr. J. Am. Chem. Soc. 1991, 113, 8982.
 (22) (a)Shapiro, E. A.;Kalinin, A.V.; Nefedov, O. M.Mendeleev Commun. 1992, 116. (b) Shapiro, E. A.; Kalinin, A. V.; Ugrak, B. I.; Nefedov, O. M. J. Chem. Soc., Perkin Trans. 1 1994, 709.

[^3]: (23) Doyle, M. P.; Protopopova, M. N.; Winchester, W. R.; Daniel, K. L. Tetrahedron Lett. 1992, 33, 7819.
 (24) Billups, W. E.; Lin, L.-J. Tetrahedron 1986, 42, 1575.
 (25) Doyle, M. P.; Winchester, W. R.; Hoorn, J. A. A.; Lynch, V.;Simonsen, S. H.; Ghosh, R. J. Am. Chem. Soc. 1993, 115, 9968.
 (26) Doyle, M. P.; Winchester, W. R.; Protopopova, M. N.; Müler, P.; Bernardinelli, G.; Ene, D.; Motallebi, S. Helv. Chim. Aca 1993, 76, 2227. (27) Doyle, M. P.; Bagheri, V.; Wandless, T. J.; Harn, N. K.; Brinker, D A.; Eagle, C. T.; Loh, K.-L. J. Am. Chem. Soc. 1990, 112, 1906.
 (28) Dirhodium(II) tetrakis[4(S)-isopropyl-2-oxazolidinone] is $R h_{2}(4 S$ IPOX) ${ }_{4}$.

[^4]: (29) Jakovac, I. J.; Goodbrand, H. B.; Lob, K. B.; Jones, J. B. J. Am. Chem. Soc. 1982, 104, 4659.
 (30) Schotten, T.; Boland, W.; Jaenicke, L. Tetrahedron Lett. 1986, 27, 2349.
 (31) Doyle, M. P.; Pieters, R. J.; Martin, S. F.; Austin, R. E.; Oalmann, C. J.; Müller, P. J. Am. Chem. Soc. 1991, 113, 1423.

[^5]: (32) (a) Maxwell, J. L.; O'Malley, S.; Brown, K. C.; Kodadek, T. Organometallics 1992, 11, 645. (b) O'Malley, S.; Kodadek, T. Organometallics 1992, 1l, 2299.
 (33) Rampel, G. A.; Legzdins, P.; Smith, H.; Wilkinson, G. Inorg. Synth. 1972, 13, 90 .
 (34) Doyle, M. P.; Westrum, L. J.; Wolthuis, W. N. E.; See, M. M.; Boone, W. P.; Bagheri, V.; Pearson, M. M. J. Am. Chem. Soc. 1993, 115, 958.

[^6]: (35) Pincock, J. A.; Moutsokapas, A. A. Can. J. Chem. 1977, 55, 979. (36) Dolgii, I. E.; Okonnishnbikova, G. P.; Nefedov, O. M. Izv. Akad. Nauk USSR, Ser. Khim. 1979, 765.

